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1 Preliminaries

A rooted tree T = (V, s; E) is a connected, acyclic (undirected) graph (V +s, E),
with a distinguished vertex s, called root. The root defines an orientation on the
edges of T, such that every edge points away from s. A successor of a vertex v
is another vertex u # v, such that there exists a path from v to v in the directed
tree. A predecessor of v is another vertex u # v, such that wu lies on the unique
path from s to v.

The depth depth(v) of a vertex v in a rooted tree T is its distance from the
root s. The i-th level L;(T) of T is the set of all vertices of depth i.

2 P2P-Streaming-Topologies and their Stability

Let s be a server in a computer network and V' = {v1,...,v,} a set of n clients.
Assume, that the server wants to distribute a multimedia stream to all n clients.
The stream is split into k stripes, which may be routed independently. In a
traditional client-server-setting the server has to send one copy of each stripe to
every client. But in a Peer-to-Peer network, the clients can replicate the content
and redistribute it to other clients. This framework allows the usage of more
efficient and stable routings, than the classical hierarchical one.

In general each stripe is distributed among all clients along a tree whose
root is the server. The combination of the trees for all k stripes, leads to P2P-
Streaming Topologies.

Definition 2.1. For k € N a P2P-streaming topology, is a sequence T =
(Th, ..., Ti) of k directed trees Ty = (V + s, Ev), ..., T = (V + s, Ex) rooted at
s.

In this formal description, each tree T; represents the routing of the i-th
stripe, while each edge represents one packet, containing a copy of this stripe,
transmitted between two clients.

The degree degT(U) of a client or the server in an topology 7, is the sum of
the degrees of v over all trees, ie.

k
deg? (v) == Z deg™ (v).
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depth(7) is the maximal of all of trees in the topology 7, ie.
depth(7) := max {depth(T;) | 1 <i < k}.

For a client v in 7, depth(v) is the maximal depth of v in 7, ie.
depth(v) := max {depthTi (w)1<i< k:} .

For each tree T; and each srt X of clients, we define succ;(X) as the set of
all successors of clients in X. Furthermore we define a function a? : P(V) — N
with

al (X) := |suce;(X) U X,
ie. a7 (X) is the number of all successors of elements in X, including X itself.
Hence a? counts the number of missing copies of stripe i, if the set X fails.

To obtain the total number of missing stripes, we have to sum over all trees,
ie. a?: P(V) — N is given by a7 (X) := Zle al (X).

Hence, a? (X) measures the total loss of stripes, if the set X of clients fails.
This includes the loss at the failed vertices. a? measures the loss of stripes in
the situation of an attack, where the vertices are forced to fail, and therefore
the packets they lose have to be counted as loss.

In the situation of a failure of vertices, it does not seem to be apropriate, to
count the packets which are sent to the failed clients. Instead, only the stripes
not arriving at still operational clients are counted. This leads to f7: P(V) — Z
with f7(X) :=a? (X) — k| X|.

Definition 2.2. Let T be a P2P-streaming-topology. Its r-attack-stability A7 (r)
for r < nk, is defined as

AT (r) = min {|X[ | X CV and al (X) > r},
and its r-failure-stability F7 (r) by
FT(r):==min {| X[ | X CV and f7(X)>1}.
In both cases we set AT (r), FT (r) = oo, if no set exists with a” (X), f7(X) > r.

Our aim is to describe optimal stable topologies in certain classes of P2P-
streaming-topologies. In general these may vary with r. But in the cases we
examine, we will see that there exist topologies in the following universal sense.

Definition 2.3. We say 7T is at least asstable as S, or 7 = S, if A7 (r) > AS(r)
for all r. T is said to be more stable than S, or T = S, if T = S and there
exists at least one r with A7 (r) > AS(r).

Let € be a class of P2P-streaming-topologies. A topology T is optimal stable
in€ if 7T =8 foral S €.

2.1 Attack- versus Failure-Stability

In Definition 2.3 we only considered attack-stability. This restriction is justified
by the following results.



Lemma 2.4. For each P2P-streaming-topology T and 0 < r < nk we have
FT(r)=AT(r +kFT(r)) and AT(r)=FT(r — kAT (r)).
Proof. Let X CV with |X| = F7(r) and f7(X) >r. Then
aT(X) = fT(X) + KIX| = fT(X) + KET(r) = 7+ KE7 (1),

Now assume, there exists a subset Y C V with |Y| < |X| and aZ (Y) > r +
EFT(r). Then

fFY)=ad?(Y) = klY| 27+ kFT(r) — K|Y| = r + k(| X]| — |Y]) > 7.

Hence | X| > F7 (r), contradicting our assumptions.
The equality A7 (r) = F7 (r — kAT (r)) follows similar. O

Lemma 2.5. Let € be a class of P2P-streaming-topologies. T € € is optimal
stable in € if and only if F7 (r) > FS(r) for every S € € and 1 < r < nk.

Proof. If T is optimal stable in €, then we have A7 (r) > A®(r) for every S € C
and 0 < r < nk. Hence, by Lemma 2.4,

FT(r)y= AT (r + kF7 (r))
> AS(r+ kF7(r)) = FS (r + kF7 (r) — kAS(r + kFT (1)) .
We have AS(r + kF7(r)) < AT (r + kF7(r)), and therefore
FS(r+kF7(r) — kAS(r + kFT (1))
> FS(r+kFT(r) — kAT (r + kF7 (r))) = FS(r),

because FS(r) is monotone in r by definition.
The other direction follows similar. O

2.2 Stability Criterions

Lemma 2.6. Let T,S be two topologies, such that a” (X) > a®(X) for all
XCV. ThenS = T.

Proof. For r let X CV be a set, such that | X| = a®(r) and a®(X) > r. Then
r<a¥(X) <d?(X)
and hence A7 (r) < |X| = AS(r). O

Lemma 2.7. Let T and S be two topologies on n clients. If vi,...,v, is an
order on the clients of T, such that

AT(r)=min{i | aT(X;) > 7} for 0<r <nk and X; == {v1,...,vi},
and u1,...,u, s an order on the clients of S, such that
aS(Yi) ZaT(Xi) for1<i<n and¥; :={u1,...,u;},

then T = S.
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Figure 1: Increasing the degree of the server

Proof. For 0 <r < nk we have A7 (r) = min {i | a” (X;) > r}. This implies
a®(Xaz(m) > a’ (Xaz() >,

and hence,
AS(r) < AT (r).

3 The Considered Topologies

In this paper we focus on two specific classes of topologies. Let C.k > 1 be
natural numbers. The class €% contains all topologies with n = Ck and
degT(s) < Ck. The second class D is the subclass of €“¥ consisting of all
topologies, such that exactly one stripe is sent from the server to each client.

Lemma 3.1. Let T € ¢%F be a topology, such that degT(s) < Ck. Then there
exists a topology S € €&F, with deg” (s) < deg®(s), such that a” (X) > aS(X)
for all X CV, and a®(Y) > aS(Y) for at least one Y C V.

Proof. Since deg” (s) < Ck, there exists at least one tree T; with depth(T}) > 2,
because otherwise every vertex would receive at least one stripe directly from
the server. Set § := (T4,...,T;-1,S:.Tit1,...,Tk), where S; is obtained from
T;, by moving one leaf v of T; of depth 2 or higher, directly beneath the server
(cmp. Figure 1). Now let X C V be an arbitrary set of clients. If X contains
neither a predecessor of v in T;, nor v itself, then the set of successors of X
in S; coincides with that in T}, and hence af(X) = af (X). If X contains a
predecessor of v in T} but not v itself, then we have succ® (X) = succ’*(X)\ {v},
leading to a$ (X) = a? (X) — 1. If X contains v, but no predecessor of v, then
af(X) = a (X), since

K2

a-T(X) = a-T(X —v)+ aiT(v) = af(X —v)+ af(v).

K3 2

If X contains v, as well as a predecesor of v in T;, we have succ’i(X) =
succ¥ (X), and hence a? (X) = aP (X). Therefore a (X) < a? (X) for X C V.

%

Since all other trees remain unchanged, we have
a®(X) < d” (X).
O

By repeated application of Lemma 3.1, we obtain the following corollary.
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Figure 2: Reducing the depth of a topology

Corollary 3.2. Let T € €% be a topology, such that deg” (s) < Ck. Then
there ezists a topology S € €S with deg® (s) = Ck, such that S = T.

Lemma 3.3. Let T € €%°F be a topology with depth(7) > 3. Then there exists
a topology S € €°°F with depth(S) < 2 and a®(X) < a% (X) for all X CV and
deg®(s) = deg” (s).

Proof. Let T; be a tree of maximum depth in 7. Then there exists a leaf v
of depth at least 3 in T;. Let u be its direct predecessor and w the direct
predecessor of u (cmp. Figure 2). Since v has depth 3 or higher, we have
w # s. Now construct S; from 7; by moving v from its predecessor u to its
predecessor w, ie. v is moved to the same depth as u. As a consequence, the
number of successors of an arbitrary client in S; is the same as in T}, with the
exception of u. In S; u has one successor - v - less than it has in 7;. Hence,
al (X) > af(X) for every X C V. For S := (T1,...,Ti—1,S:, Tix1,- - -, T)), this
implies a7 (X) > a%(X).

This construction reduces the number of clients of maximum depth by one.
Repeated application leads to a topology S with maximum depth 2 and a5 (X) <
a? (X) for every X C V. O

Corollary 3.4. Let T € ¢%* be a topology with depth(7) > 3. Then there
exists a topology S € €% with depth(S) < 2 and S = T and degS(s) =
deg” (s).

4 Topologies of Depth 2

Due to Corollary 3.4 we can restrict ourselves to topologies in ®¢* with max-
imum depth 2. For these, the functions a? and f7 can be written in a very
intuitive form. First observe, that the failure of a client v causes a failure of all
stripes he sends to other clients, which did not fail themselves. Hence, we have

k
FT0 =30 Jsuce (v)\ X,

i=1 veX

where succ;(v) is the set of all successors of v in T;.



Since every client receives exactly one stripe directly from the server, we
have succ;(v) # ) for at most one 7, namely the unique 7, such that v has depth
1 in T;. This leads to

k
Tx)=>" > [succi(v)\ X|,

i=1 veL,(T;)NX

where L1 (T;) is the first level of Tj, ie. the set of clients of depth 1 in 7;. In
addition, the sets succ;(v) for v € L1(T;) are a partition of the set C'\ L1(T3).
Hence, the sets succ;(v) \ X for v € L1(T;) are a partition of V' \ (X U L1(T3)).

A topology 7 € ©%F of depth 2 induces orderings on the trees and on
the clients. First, order the trees of 7 ascending by the sizes of their first
level. Hence, we have T = (T4,...,Ty) with |L1(T1)| < --- < |L1(T%)|. Since
every client is at level one in exactly one tree, this induces an ordered partition
(L1(T1),...,L1(Tx)) on V. In the following we always assume, that the trees of
7T are ordered in this way.

Inside one set L1 (T;) of this partition, the clients may be ordered descending,
by the number of successors, not already in preceding partitions, ie. they are
ordered descending by

|suce; (v U Ly (T,

This results in a total ordering v1, ..., v,, such that

o Li(T3) = {Vht1, - Uniza(ry)} for h= 31" ¢j and ¢; == | Ly (T})],

e g <---<¢p, and

o |succi(vpy1) \ Xn| > -+ > [succ;(Vhte,) \ Xn|, with Xy, = {v1,..., 00}
Orderings of this type are called proper.

Lemma 4.1. Let vy,...,v, be a proper ordering of the clients of T € DCF.
Then

T (Xny) Ziln—h =) +1(k—i—1)
for0<i<k,0<Il<cit andhzZézch
Proof. We have

T(Xnit) Z > lsuce; (v) \ Xnii-

Jj= 1UEL1(T )ﬂX;H,l
Since Ll(Tj)ﬂXh_H = Ll( ) fOI‘j <7and Ll( z+1)ﬁXh+l = {Uh-i-la .. .,’U}H_l}
and L1(Tj) N Xpy =0 for j > i+ 1, we obtain

l

T (Xpy1) = Z D fsuce; (0) \ Xngal + Y Isuccir1(vni;) \ Xnyal-

Jj=1veL(Ty) j=1

Since the sets succ;(v) \ Xp4q with v € Li(Tj) and j < i are a partition of
V' \ Xn+1, we have

[ l
T (Xn) = DIV Xl + > Isuceis (vnr) \ Xn-
j=1 j=1



Obviously, we have |V \ Xp41| =n — h — [, leading to

l
T (Xng) =i(n—h=1) 4+ |succip1 (vnr;) \ Xnp-

Jj=1

Furthermore, we have succ;+1(vh4;) \ Xn1 = succiy1(vn4;) \ Xp for 1 < j <1,
since the vertex vy ; is at level 1 in T; 4. This leads to

l

FT(Xng) =i(n—h=1) 4+ |succisr (var;) \ Xnl. (1)
=1
Since vy, ..., v, is a proper ordering, the vertices vay1,...,Vpqc;,, satisfy

succit1(vnt1) \ Xn| > -+ > [succit1(Vntesyq) \ Xal-
Following Lemma A.1, this implies
l

> lsuccig (vngy) \ Xl

=1
k
- VV\XHCHJJ .y thCiJrlJ — \‘Zj—i-i,-chJ

Ci+1 Ci+1 Cit+1
Since ¢ < --- < ¢, we furthermore have Z?:Hz ¢; > (k—1i—1)c;41 and hence
l k .
. C; k — 72— 1)ec;
> Isuccipa (vngy) \ Xn| > 1 Lmhia = {( l )CHIJ =k —i-1)
= Ci+1 Ci+1

(2)

(1) in combination with (2) leads to

FT (X)) = i(n—h—1) +1(k—i—1).

5 The optimal topology in ©¢*

We propose that, the following topology is optimal stable in ®¢*. Assume that
we have an ordering vy, ...,v, on the n = Ck clients. Then the ¢-th tree S; of
the topology C € ©DF is constructed in the following way:

e The clients vo(;i—1)41,- - -, vci are directly connected to the server s.
e For 0 <j <kandj#i— 1, the client vc;y; is connected to ve(i—1)4i-

Observe, that the first level of every tree contains exactly C clients. Further-
more, client v (;—1)4; has exactly k—1 successors in tree T}, and none otherwise,
and exactly ¢ — 1 of these successors are in the first level of a tree 7} with j < 7.
Hence |succ;(ve(i—1)+1)] = k — 1 and |succ; (vei—1)+1) \ Xeo@-1)| = k — i, where
Xi = {’01, N ,’Ui}.



Figure 3: The stripes of the optimal topology C for C =2 and k =3

Alternatively, we can describe C in the following way. The clients are sep-
arated into groups V; := {v;,vc4j,...,Vc(k-1)4;} for 1 < j < C. The server
sends a copy of the i-th stripe to vo(i—1)4;. This client then distributes the
stripe to all other members of its group. In total, the server sends Ck = n
packets to clients, and each client receives exaclty one stripe from the server,
and sends k — 1 stripes to peers.

Lemma 5.1. For 0 < r < nk, we have
AC(r) = min{i | a®(X;) > 7},
where X; := {v1,...,v;}.

Proof. First, observe, that the failure of a client in a specific group Vj, does not
affect members of other groups. If [ clients in a group fail, this leads to a total
loss of Ik + I(k — 1) = I(2k — 1) stripes, because every failed client causes a loss
of k incoming stripes and k — [ outgoing stripes to the remaining members.
Now, we take a look at the total loss caused by 4 failures. Assume, that I;

nodes failed in group V;j, and hence Zle l; = i. Then the total loss is

C C
>kl 41k — 1) =2ki— > I3,
j=1 j=1

¢ 12 under the

Hence, to maximize the total loss, we have to minimize ) Py

_ c .
restriction > ., I = i.

Now assume that there exist two groups, eg. 1 and 2, such that lo =13 + ¢
for ¢ > 2. Then we have

B412=034+ (1 +c) =20+ 2l + 2,
while
(b + 1)*+(l2 — 1)°
=42+ 1+ +2(c— 1Dl + (c—1)?
=202 +2cly +c* —2(c—1).

Since the second term is smaller than the first, it would be a better solution to
increase [; and to decrease lo by one each. Repetiton of this procedure shows,
that the maximal loss in C caused by the failure of ¢ nodes, is realized by a



distribution of these failures to the groups, such that the numbers of failures in
two distinct groups differ by at most one.

Hence, the set X; = {v1,...,v;} realizes the maximal loss caused by the
failure of i clients, and therefore A°(r) = min{i | a®(X;) > r}. O

Lemma 5.2. For0<i<k and1 <1< C, we have
S (Xoin) =i(n—Ci—1)+1(k—i—1).

Proof. We have

k
(Xciv) Z > succ; (v) \ Xcitil-

=lveLli1(Cj)NXnit

Since L1(C;)NXcivi = L1(C;) for j <iand L1(Cip1)NXcivi = {vcit1, ..., voivi
and L1(Cj) N X¢ip = 0 for j > i+ 1, we obtain

l

XCH-l Z Z |succ; (v \XCl+l|+Z|SUCCl+1(UCZ+J \ Xcitil-
Jj=1lveL.(Cj) j=1

Since succ;(v) \ Xcip with v € L1(C;) and j < 7 is a partition of V' \ X¢iy,
we have
i !
FEXein)) = D> IV Xoil + Y Isuccip (voirs) \ Xoil.
j=1 j=1

Obviously, we have |V \ X¢;11] = n — Ci — [, leading to

l

P (Xnp) =i(n—Ci— 1)+ Y |succip1(voiss) \ Xeirl-
j=1

Furthermore, we have succi+1(vci+j) \ Xcirr = succiyi(veoit;) \ Xoi for 1 <
j <, since the vertex vc;; is at level 1 in C;11. This leads to

l

FE(Xeipr) =i(n—Ci—1)+ Y |succiyr (voiy;) \ Xeil- (3)
j=1

Due to its construction, succ;+1(vcit;) contains k — 1 clients, with ¢ of then in
Xco;. Hence,

fC(Xoin) =iln—Ci— 1)+ 1(k—i—1). (4)
|
Lemma 5.3. For T € %% and 1 <i <n, we have f7(X;) > f¢(X;).

Proof. We set

%

h
%:max{h|2cj <i} andlA:ichj.

j=1 j=1



With h = Y20, this implies i = A+ with 0 < i < kand 0 < | < ¢;
Following Lemma 4.1, this implies

+1°

fIX)zin—h=D+ilk—i—-1) =in—i)+i(k—i—1). (5)

Now set

i

LéJ and [ =i — Ci.
This implies i = €%+ [ and 0 < [ < C and by Lemma 5.2
X)) =in—Ci—D)+1l(k—i—1)=i(n—i)+I(k—i—1). (6)
Due to Lemma A.1 and the fact that the ¢; are non-decreasing, we have

i+1
e+ 7| =G+1c
j=1

and as a consequence

P = {éJ - V;ZJ < VLJFCQ“J < {%J it

implying ¢ < 7. Furthermore, observe

(k—i—1)<Clk—i—1)=n—-C(i+1)<n—i.
If 7 < 7 we have

X)) =itn—i)+1l(k—i—1) <i(n—1)+ (n—1)
=@+ D(n-i) <iln—i) < fT(X) (7)

If i = i we have
[=i—Ci=i—Ci=h+1-Ci=1+(h—Ci) <,
since h=Zj—:1 ¢; < Ci. This implies

FTX) =i —i) +i(k—i—1) =
=in—D)+ik—i—1)>in—i)+i(k—i—1) = fS(X;). (8)

Theorem 5.4. C = T for every T € DCF.

Proof. Since a” (X) = f7(X) + k| X| for every 7 € DF | the topologies 7 and
C satisfy the conditions of Lemma 2.7, due to Lemma 5.3. Hence S = 7 for
every T € DOk, O

10



6 Optimal topologies in ¢¢*

Now, that we know a optimal stable topology of D* we examine the more
general class €.

Lemma 6.1. If T € ¢€%* is an optimal stable topology in €%, then a” (v) =
2k — 1 for every client v.

Proof. First observe, a®(v) = k4 (k —1) = 2k — 1 for every client v, and hence,
due to Lemma 5.1, A°(2k — 1) = 1 and A®(2k) > 1. Since C € ¢%* every
optimal stable topology 7 in €% has to satisfy A7 (2k — 1) < 1. At the same
time, since 21 — 1 > 0, we have A7 (2k — 1) > 1, leading to

AT (2k —1) =1.

Now assume, that there exists a client v with a7 (v) > 2k—1. Then A7 (2k) =
1 < A(2k), contradicting the optimality of 7. Hence we have a7 (v) < 2k — 1
for every client v.

Since a” (v) counts the stripes lost due to the failure of v, it is at least the
number of edges incident to v in all trees. Hence, summing up the a” (v), counts
every edge at least twice, except for those connected to the server. This results
in

Z aT (v) > 2nk — deg”? (s) > 2nk —n = n(2k — 1).
veV

If a? (v) < 2k — 1 for at least one client, we have

> a(v) <n(2k - 1),

veV

contradicting the preceding observation. Hence we have a? (v) = 2k — 1 for
every client v. O

Corollary 6.2. If T is optimal stable in €%, then T € DF.

Proof. Assume, that 7 has depth 3 or higher. Then in one tree ¢; there exists
a sequence s — u — v — w. Hence, by summing up the values a? (v), the edge
v — w would be countet at least three times, once for w, once for v and once
for w. This would lead to

Z aT (v) > 2nk — deg” (s) > 2nk —n = n(2k — 1),
veV

and therefore a” (¢) > 2k — 1 for at least one client, contradicting Lemma 6.1.
Hence, 7 has at most depth 2.

Now assume that one client receives more than one package. Then there
exists another client v, which does not receive any stripe directly from the server,
and hence has depth 2 in every tree. As a consequence v has no successor in 7,
leading to a” (v) = k, contradicting Lemma 6.1.

As a consequence every client receives at most one stripe directly from the
server. By Lemma 3.1, 7 has to satisfy degT(s) = Ck, because it is optimal
stable in €¢“°* implying 7 € D+, O

11



Lemma 6.3. For every topology T € €SF there exists a topology S € €CF with
S=T.

Proof. Let T be an arbitrary topology in €“* \ D% ie. there either exists
a client receiving none, two or more stripes directly from the server. Folowing
Lemma 3.1, we can assume that deg” (s) = Ck and depth(7) = 2. Since
there exists a client v receiving no stripe directly from s, there has to exist
another client v, receiving at least two stripes directly from s. As a consequence,
v is a leaf in every tree, while u is a tevel 1 in at least two trees. Assume
that T; is one of those trees. Then we define S; by exchanging u and v, ie.
u becomes a leaf in T; and v is moved to level 1. This leads to a topology
S = (Tl, . ,Tifl, Si, E+17 . ,Tk)

Now assume that there exists r with 0 < r < Ck and A°(r) < A% (r). Let
X C be given with |X| = AS(r) and a5(X) > r. Since AS(r) < a7 (r), this
implies

a? (X) <r<aS(X). (9)

For j # ¢ we have af (X) = ajT(X ), since the trees T; remain unchanged. For
T; we have to differentiate four cases.

1. If u,v € X, then a$ (X) = a7 (X), implying a®(X) = a7 (X), contradict-

ing (9).

2. If u,v € X, then af(X) = a? (X), leading to the same contradiction as
the preceding case.

3. Ifu € X and v ¢ X, then we have a5 (X) < a7 (X), implying a®(X) <
a® (X), contradicting (9).
4. fu ¢ X and v € X, then set YV := (X U {u}) \ {v}, ie. is X with v

replaced by u. Since v is a leaf in every tree, and u may occur at level 1,
the exchange of u and v increases ajT, leading to

aS(V) = aZ (V) = a7 (X) = a5 (X)

for j # i. At the same time we have

a7 (V) = a¥(X),

K2

and hence

k
a’ (Y)Y a] (V)2 aS(X)=a%(X) >

j=1
Therefore A7 (r) < |Y| = | X| = AS(r), contradicting the assumption.

Consequently, we have AS(r) > A% (r) for 0 < r < nk and hence S = 7.
Since the number of clients, which receive no stripe from the server, is one less
in § than in 7', without increasing the degree of s, iterated application of this
construction leads to a topology S € D¢* with S = 7.

Since C is optimal stable in D, it is optimal stable in ¢, |
Theorem 6.4. C is optimal stable in €CF.

Proof. For every topology 7 € €%* there exists a topology S € ®F with with
S > T, by LEmma 6.3. Since C is optimal in ®¢*, we have C = 7, due to the
fact, that > is transitive. [l
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A A simple fact about monotone sequences of
integers

Lemma A.1. Let (X;)1<i<n be a finite sequence of integers, and x := Y ;| ;.

(1) If (z;) is non-increasing, then

Proof. First we prove (1). Since (z;) is non-increasing, we have z; > x; for
x x

1 <4 < n, and hence z < nzxy, implying 1 > {ﬂ > {HJ
Now assume that there exists 2 < j < n with

J

|
E 1'i<]\‘—J.
. n
i=1

Choose j to be minimal among those satisfying the previos inequality. Then

S0z

This implies

and therefore, due to the monotony of (z;),
X . .
z; < {—J for i > j.
n
As a consequence, we have
- T
> w<m-i|7]
i=j7+1
and hence,
- J - T x
o . Rk PN EA
Sa=d et 3 m<i[p]rm-n|7]<a
i=1 i=1 =541

contradicting the definition of x.
Statement (2) is a consequence of (1), since (yx)1<i<n With y; = 2, — z; is
non-decreasing. |
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