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1 Preliminaries

A rooted tree T = (V, s; E) is a connected, acyclic (undirected) graph (V +s, E),
with a distinguished vertex s, called root. The root defines an orientation on the
edges of T , such that every edge points away from s. A successor of a vertex v

is another vertex u 6= v, such that there exists a path from v to u in the directed
tree. A predecessor of v is another vertex u 6= v, such that u lies on the unique
path from s to v.

The depth depth(v) of a vertex v in a rooted tree T is its distance from the
root s. The i-th level Li(T ) of T is the set of all vertices of depth i.

2 P2P-Streaming-Topologies and their Stability

Let s be a server in a computer network and V = {v1, . . . , vn} a set of n clients.
Assume, that the server wants to distribute a multimedia stream to all n clients.
The stream is split into k stripes, which may be routed independently. In a
traditional client-server-setting the server has to send one copy of each stripe to
every client. But in a Peer-to-Peer network, the clients can replicate the content
and redistribute it to other clients. This framework allows the usage of more
efficient and stable routings, than the classical hierarchical one.

In general each stripe is distributed among all clients along a tree whose
root is the server. The combination of the trees for all k stripes, leads to P2P-
Streaming Topologies.

Definition 2.1. For k ∈ N a P2P-streaming topology, is a sequence T =
(T1, . . . , Tk) of k directed trees T1 = (V + s, E1), . . . , Tk = (V + s, Ek) rooted at
s.

In this formal description, each tree Ti represents the routing of the i-th
stripe, while each edge represents one packet, containing a copy of this stripe,
transmitted between two clients.

The degree degT (v) of a client or the server in an topology T , is the sum of
the degrees of v over all trees, ie.

degT (v) :=

k
∑

i=1

degTi(v).
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depth(T ) is the maximal of all of trees in the topology T , ie.

depth(T ) := max {depth(Ti) | 1 ≤ i ≤ k} .

For a client v in T , depth(v) is the maximal depth of v in T , ie.

depth(v) := max
{

depthTi(v) | 1 ≤ i ≤ k
}

.

For each tree Ti and each srt X of clients, we define succi(X) as the set of
all successors of clients in X . Furthermore we define a function aT

i : P(V) → N

with

aT
i (X) := |succi(X) ∪ X |,

ie. aT
i (X) is the number of all successors of elements in X , including X itself.

Hence aT
i counts the number of missing copies of stripe i, if the set X fails.

To obtain the total number of missing stripes, we have to sum over all trees,
ie. aT : P(V ) → N is given by aT (X) :=

∑k
i=1 aT

i (X).
Hence, aT (X) measures the total loss of stripes, if the set X of clients fails.

This includes the loss at the failed vertices. aT measures the loss of stripes in
the situation of an attack, where the vertices are forced to fail, and therefore
the packets they lose have to be counted as loss.

In the situation of a failure of vertices, it does not seem to be apropriate, to
count the packets which are sent to the failed clients. Instead, only the stripes
not arriving at still operational clients are counted. This leads to fT : P(V ) → Z

with fT (X) := aT (X) − k|X |.

Definition 2.2. Let T be a P2P-streaming-topology. Its r-attack-stability AT (r)
for r ≤ nk, is defined as

AT (r) := min
{

|X | | X ⊆ V and aT (X) ≥ r
}

,

and its r-failure-stability F T (r) by

F T (r) := min
{

|X | | X ⊆ V and fT (X) ≥ r
}

.

In both cases we set AT (r), F T (r) = ∞, if no set exists with aT (X), fT (X) ≥ r.

Our aim is to describe optimal stable topologies in certain classes of P2P-
streaming-topologies. In general these may vary with r. But in the cases we
examine, we will see that there exist topologies in the following universal sense.

Definition 2.3. We say T is at least as stable as S, or T � S, if AT (r) ≥ AS(r)
for all r. T is said to be more stable than S, or T � S, if T � S and there
exists at least one r with AT (r) > AS(r).

Let C be a class of P2P-streaming-topologies. A topology T is optimal stable
in C, if T � S for all S ∈ C.

2.1 Attack- versus Failure-Stability

In Definition 2.3 we only considered attack-stability. This restriction is justified
by the following results.
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Lemma 2.4. For each P2P-streaming-topology T and 0 ≤ r ≤ nk we have

F T (r) = AT (r + kF T (r)) and AT (r) = F T (r − kAT (r)).

Proof. Let X ⊆ V with |X | = F T (r) and fT (X) ≥ r. Then

aT (X) = fT (X) + k|X | = fT (X) + kF T (r) ≥ r + kF T (r).

Now assume, there exists a subset Y ⊆ V with |Y | < |X | and aT (Y ) ≥ r +
kF T (r). Then

fT (Y ) = aT (Y ) − k|Y | ≥ r + kF T (r) − k|Y | = r + k(|X | − |Y |) > r.

Hence |X | > F T (r), contradicting our assumptions.
The equality AT (r) = F T (r − kAT (r)) follows similar.

Lemma 2.5. Let C be a class of P2P-streaming-topologies. T ∈ C is optimal
stable in C if and only if F T (r) ≥ FS(r) for every S ∈ C and 1 ≤ r ≤ nk.

Proof. If T is optimal stable in C, then we have AT (r) ≥ AS(r) for every S ∈ C
and 0 ≤ r ≤ nk. Hence, by Lemma 2.4,

F T (r) = AT (r + kF T (r))

≥ AS(r + kF T (r)) = FS
(

r + kF T (r) − kAS(r + kF T (r)
)

.

We have AS(r + kF T (r)) ≤ AT (r + kF T (r)), and therefore

FS(r + kF T (r) − kAS(r + kF T (r)))

≥ FS(r + kF T (r) − kAT (r + kF T (r))) = F S(r),

because F S(r) is monotone in r by definition.
The other direction follows similar.

2.2 Stability Criterions

Lemma 2.6. Let T ,S be two topologies, such that aT (X) ≥ aS(X) for all
X ⊆ V . Then S � T .

Proof. For r let X ⊆ V be a set, such that |X | = aS(r) and aS(X) ≥ r. Then

r ≤ aS(X) ≤ aT (X)

and hence AT (r) ≤ |X | = AS(r).

Lemma 2.7. Let T and S be two topologies on n clients. If v1, . . . , vn is an
order on the clients of T , such that

AT (r) = min
{

i | aT (Xi) ≥ r
}

for 0 ≤ r ≤ nk and Xi := {v1, . . . , vi},

and u1, . . . , un is an order on the clients of S, such that

aS(Yi) ≥ aT (Xi) for 1 ≤ i ≤ n and Yi := {u1, . . . , ui},

then T � S.
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Figure 1: Increasing the degree of the server

Proof. For 0 ≤ r ≤ nk we have AT (r) = min
{

i | aT (Xi) ≥ r
}

. This implies

aS(XAT (r)) ≥ aT (XAT (r)) ≥ r,

and hence,
AS(r) ≤ AT (r).

3 The Considered Topologies

In this paper we focus on two specific classes of topologies. Let C, k ≥ 1 be
natural numbers. The class CC,k contains all topologies with n = Ck and
degT (s) ≤ Ck. The second class DC,k is the subclass of CC,k, consisting of all
topologies, such that exactly one stripe is sent from the server to each client.

Lemma 3.1. Let T ∈ CC,k be a topology, such that degT (s) < Ck. Then there
exists a topology S ∈ CC,k, with degT (s) < degS(s), such that aT (X) ≥ aS(X)
for all X ⊆ V , and aT (Y ) > aS(Y ) for at least one Y ⊆ V .

Proof. Since degT (s) < Ck, there exists at least one tree Ti with depth(Ti) ≥ 2,
because otherwise every vertex would receive at least one stripe directly from
the server. Set S := (T1, . . . , Ti−1, Si.Ti+1, . . . , Tk), where Si is obtained from
Ti, by moving one leaf v of Ti of depth 2 or higher, directly beneath the server
(cmp. Figure 1). Now let X ⊆ V be an arbitrary set of clients. If X contains
neither a predecessor of v in Ti, nor v itself, then the set of successors of X

in Si coincides with that in Ti, and hence aS
i (X) = aT

i (X). If X contains a
predecessor of v in Ti but not v itself, then we have succSi(X) = succTi(X)\{v},
leading to aS

i (X) = aT
i (X) − 1. If X contains v, but no predecessor of v, then

aS
i (X) = aT

i (X), since

aT
i (X) = aT

i (X − v) + aT
i (v) = aS

i (X − v) + aS
i (v).

If X contains v, as well as a predecesor of v in Ti, we have succTi(X) =
succSi(X), and hence aT

i (X) = aS
i (X). Therefore aS

i (X) ≤ aT
i (X) for X ⊆ V .

Since all other trees remain unchanged, we have

aS(X) ≤ aT (X).

By repeated application of Lemma 3.1, we obtain the following corollary.
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Figure 2: Reducing the depth of a topology

Corollary 3.2. Let T ∈ CC,k be a topology, such that degT (s) < Ck. Then
there exists a topology S ∈ CC,k, with degS(s) = Ck, such that S � T .

Lemma 3.3. Let T ∈ CC,k be a topology with depth(T ) ≥ 3. Then there exists
a topology S ∈ CC,k with depth(S) ≤ 2 and aS(X) ≤ aT (X) for all X ⊆ V and
degS(s) = degT (s).

Proof. Let Ti be a tree of maximum depth in T . Then there exists a leaf v

of depth at least 3 in Ti. Let u be its direct predecessor and w the direct
predecessor of u (cmp. Figure 2). Since v has depth 3 or higher, we have
w 6= s. Now construct Si from Ti by moving v from its predecessor u to its
predecessor w, ie. v is moved to the same depth as u. As a consequence, the
number of successors of an arbitrary client in Si is the same as in Ti, with the
exception of u. In Si u has one successor - v - less than it has in Ti. Hence,
aT

i (X) ≥ aS
i (X) for every X ⊆ V . For S := (T1, . . . , Ti−1, Si, Ti+1, . . . , Tk), this

implies aT (X) ≥ aS(X).
This construction reduces the number of clients of maximum depth by one.

Repeated application leads to a topology S with maximum depth 2 and aS(X) ≤
aT (X) for every X ⊆ V .

Corollary 3.4. Let T ∈ CC,k be a topology with depth(T ) ≥ 3. Then there
exists a topology S ∈ CC,k with depth(S) ≤ 2 and S � T and degS(s) =
degT (s).

4 Topologies of Depth 2

Due to Corollary 3.4 we can restrict ourselves to topologies in DC,k with max-
imum depth 2. For these, the functions aT and fT can be written in a very
intuitive form. First observe, that the failure of a client v causes a failure of all
stripes he sends to other clients, which did not fail themselves. Hence, we have

fT (X) =

k
∑

i=1

∑

v∈X

|succi(v) \ X |,

where succi(v) is the set of all successors of v in Ti.

5



Since every client receives exactly one stripe directly from the server, we
have succi(v) 6= ∅ for at most one i, namely the unique i, such that v has depth
1 in Ti. This leads to

fT (X) =

k
∑

i=1

∑

v∈L1(Ti)∩X

|succi(v) \ X |,

where L1(Ti) is the first level of Ti, ie. the set of clients of depth 1 in Ti. In
addition, the sets succi(v) for v ∈ L1(Ti) are a partition of the set C \ L1(Ti).
Hence, the sets succi(v) \ X for v ∈ L1(Ti) are a partition of V \ (X ∪ L1(Ti)).

A topology T ∈ DC,k of depth 2 induces orderings on the trees and on
the clients. First, order the trees of T ascending by the sizes of their first
level. Hence, we have T = (T1, . . . , Tk) with |L1(T1)| ≤ · · · ≤ |L1(Tk)|. Since
every client is at level one in exactly one tree, this induces an ordered partition
(L1(T1), . . . , L1(Tk)) on V . In the following we always assume, that the trees of
T are ordered in this way.

Inside one set L1(Ti) of this partition, the clients may be ordered descending,
by the number of successors, not already in preceding partitions, ie. they are
ordered descending by

|succi(v) \
i−1
⋃

j=1

L1(Tj)|.

This results in a total ordering v1, . . . , vn, such that

• L1(Ti) = {vh+1, . . . , vh+|L1(Ti)|} for h =
∑i−1

j=1 cj and cj := |L1(Tj)|,

• c1 ≤ · · · ≤ ck, and

• |succi(vh+1) \ Xh| ≥ · · · ≥ |succi(vh+ci
) \ Xh|, with Xh = {v1, . . . , vh}.

Orderings of this type are called proper.

Lemma 4.1. Let v1, . . . , vn be a proper ordering of the clients of T ∈ DC,k.
Then

fT (Xh+l) ≥ i(n − h − l) + l(k − i − 1)

for 0 ≤ i ≤ k, 0 ≤ l < ci+1 and h =
∑i

j=1 cj .

Proof. We have

fT (Xh+l) =

k
∑

j=1

∑

v∈L1(Tj )∩Xh+l

|succj(v) \ Xh+l|.

Since L1(Tj)∩Xh+l = L1(Tj) for j ≤ i and L1(Ti+1)∩Xh+l = {vh+1, . . . , vh+l}
and L1(Tj) ∩ Xh+l = ∅ for j > i + 1, we obtain

fT (Xh+l) =

i
∑

j=1

∑

v∈L1(Tj)

|succj(v) \ Xh+l| +
l

∑

j=1

|succi+1(vh+j) \ Xh+l|.

Since the sets succj(v) \ Xh+l with v ∈ L1(Tj) and j ≤ i are a partition of
V \ Xh+l, we have

fT (Xh+l) =

i
∑

j=1

|V \ Xh+l| +
l

∑

j=1

|succi+1(vh+j) \ Xh+l|.
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Obviously, we have |V \ Xh+1| = n − h − l, leading to

fT (Xh+l) = i(n − h − l) +

l
∑

j=1

|succi+1(vh+j) \Xh+l|.

Furthermore, we have succi+1(vh+j) \Xh+l = succi+1(vh+j) \Xh for 1 ≤ j ≤ l,
since the vertex vh+j is at level 1 in Ti+1. This leads to

fT (Xh+l) = i(n − h − l) +

l
∑

j=1

|succi+1(vh+j) \ Xh|. (1)

Since v1, . . . , vn is a proper ordering, the vertices vh+1, . . . , vh+ci+1
satisfy

|succi+1(vh+1) \ Xh| ≥ · · · ≥ |succi+1(vh+ci+1
) \ Xh|.

Following Lemma A.1, this implies

l
∑

j=1

|succi+1(vh+j) \ Xh|

≥ l

⌊

|V \ Xh+ci+1
|

ci+1

⌋

= l

⌊

n − h − ci+1

ci+1

⌋

= l

⌊

∑k

j=i+2 cj

ci+1

⌋

Since c1 ≤ · · · ≤ ck, we furthermore have
∑k

j=i+2 cj ≥ (k− i−1)ci+1 and hence

l
∑

j=1

|succi+1(vh+j) \ Xh| ≥ l

⌊

∑k

j=i+2 cj

ci+1

⌋

≥ l

⌊

(k − i − 1)ci+1

ci+1

⌋

= l(k − i − 1)

(2)
(1) in combination with (2) leads to

fT (Xh+l) ≥ i(n − h − l) + l(k − i − 1).

5 The optimal topology in D
C,k

We propose that, the following topology is optimal stable in DC,k. Assume that
we have an ordering v1, . . . , vn on the n = Ck clients. Then the i-th tree Si of
the topology C ∈ DC,k is constructed in the following way:

• The clients vC(i−1)+1, . . . , vCi are directly connected to the server s.

• For 0 ≤ j < k and j 6= i − 1, the client vCj+l is connected to vC(i−1)+l.

Observe, that the first level of every tree contains exactly C clients. Further-
more, client vC(i−1)+l has exactly k−1 successors in tree Ti, and none otherwise,
and exactly i− 1 of these successors are in the first level of a tree Tj with j < i.
Hence |succi(vC(i−1)+l)| = k − 1 and |succi(vC(i−1)+l) \XC(i−1)| = k − i, where
Xi := {v1, . . . , vi}.
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Figure 3: The stripes of the optimal topology C for C = 2 and k = 3

Alternatively, we can describe C in the following way. The clients are sep-
arated into groups Vj := {vj , vC+j , . . . , vC(k−1)+j} for 1 ≤ j ≤ C. The server
sends a copy of the i-th stripe to vC(i−1)+j . This client then distributes the
stripe to all other members of its group. In total, the server sends Ck = n

packets to clients, and each client receives exaclty one stripe from the server,
and sends k − 1 stripes to peers.

Lemma 5.1. For 0 ≤ r ≤ nk, we have

AC(r) = min{i | aC(Xi) ≥ r},

where Xi := {v1, . . . , vi}.

Proof. First, observe, that the failure of a client in a specific group Vj , does not
affect members of other groups. If l clients in a group fail, this leads to a total
loss of lk + l(k − l) = l(2k − l) stripes, because every failed client causes a loss
of k incoming stripes and k − l outgoing stripes to the remaining members.

Now, we take a look at the total loss caused by i failures. Assume, that lj

nodes failed in group Vjj, and hence
∑C

j=1 lj = i. Then the total loss is

C
∑

j=1

klj + lj(k − lj) = 2ki−
C

∑

j=1

l2j .

Hence, to maximize the total loss, we have to minimize
∑C

j=1 l2j under the

restriction
∑C

j=1 lj = i.
Now assume that there exist two groups, eg. 1 and 2, such that l2 = l1 + c

for c ≥ 2. Then we have

l21 + l22 = l21 + (l1 + c)2 = 2l21 + 2cl1 + c2,

while

(l1 + 1)2+(l2 − 1)2

= l21 + 2l1 + 1 + l21 + 2(c − 1)l1 + (c − 1)2

= 2l21 + 2cl1 + c2 − 2(c − 1).

Since the second term is smaller than the first, it would be a better solution to
increase l1 and to decrease l2 by one each. Repetiton of this procedure shows,
that the maximal loss in C caused by the failure of i nodes, is realized by a
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distribution of these failures to the groups, such that the numbers of failures in
two distinct groups differ by at most one.

Hence, the set Xi = {v1, . . . , vi} realizes the maximal loss caused by the
failure of i clients, and therefore AC(r) = min{i | aC(Xi) ≥ r}.

Lemma 5.2. For 0 ≤ i ≤ k and 1 ≤ l < C, we have

fC(XCi+l) = i(n − Ci − l) + l(k − i − 1).

Proof. We have

fC(XCi+l) =
k

∑

j=1

∑

v∈L1(Cj)∩Xh+l

|succj(v) \ XCi+l|.

Since L1(Cj)∩XCi+l = L1(Cj) for j ≤ i and L1(Ci+1)∩XCi+l = {vCi+1, . . . , vCi+l}
and L1(Cj) ∩ XCi+l = ∅ for j > i + 1, we obtain

fC(XCi+l) =

i
∑

j=1

∑

v∈L1(Cj)

|succj(v) \ XCi+l| +
l

∑

j=1

|succi+1(vCi+j) \ XCi+l|.

Since succj(v) \ XCi+l with v ∈ L1(Cj) and j ≤ î is a partition of V \ XCi+l,
we have

fC(XCi+l) =

i
∑

j=1

|V \ XCi+l| +
l

∑

j=1

|succi+1(vCi+j) \ XCi+l|.

Obviously, we have |V \ XCi+1| = n − Ci − l, leading to

fT (Xh+l) = i(n − Ci − l) +

l
∑

j=1

|succi+1(vCi+j) \ XCi+l|.

Furthermore, we have succi+1(vCi+j) \ XCi+l = succi+1(vCi+j) \ XCi for 1 ≤
j ≤ l, since the vertex vCi+j is at level 1 in Ci+1. This leads to

fC(XCi+l) = i(n − Ci − l) +

l
∑

j=1

|succi+1(vCi+j) \ XCi|. (3)

Due to its construction, succi+1(vCi+j) contains k − 1 clients, with i of then in
XCi. Hence,

fC(XCi+l) = i(n − Ci − l) + l(k − i − 1). (4)

Lemma 5.3. For T ∈ DC,k and 1 ≤ i ≤ n, we have fT (Xi) ≥ fC(Xi).

Proof. We set

î = max{h |
h

∑

j=1

cj ≤ i} and l̂ = i −
î

∑

j=1

cj .
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With h =
∑î

j=1, this implies i = h + l with 0 ≤ î ≤ k and 0 ≤ l̂ < cî+1.
Following Lemma 4.1, this implies

fT (Xi) ≥ î(n − h − l̂) + l̂(k − î − 1) = î(n − i) + l̂(k − î − 1). (5)

Now set

ĩ =

⌊

i

C

⌋

and l̃ = i − Cĩ.

This implies i = Cĩ + l̃ and 0 ≤ l̃ < C and by Lemma 5.2

fC(Xi) = ĩ(n − Cĩ − l̃) + l̃(k − ĩ − 1) = ĩ(n − i) + l̃(k − ĩ − 1). (6)

Due to Lemma A.1 and the fact that the ci are non-decreasing, we have

î+1
∑

j=1

cj ≤ (̂i + 1)
⌈n

k

⌉

= (̂i + 1)C,

and as a consequence

ĩ =

⌊

i

C

⌋

=

⌊

h + l̂

C

⌋

<

⌊

h + ci+1

C

⌋

≤

⌊

(̂i + 1)C

C

⌋

= î + 1.

implying ĩ ≤ î. Furthermore, observe

l̃(k − ĩ − 1) < C(k − ĩ − 1) = n − C (̃i + 1) < n − i.

If ĩ < î we have

fC(Xi) = ĩ(n − i) + l̃(k − ĩ − 1) < ĩ(n − i) + (n − i) =

= (̃i + 1)(n − i) ≤ î(n − i) ≤ fT (Xi) (7)

If ĩ = î we have

l̃ = i − Cĩ = i − Cî = h + l − Cî = l̂ + (h − Cî) ≤ l̂,

since h =
∑î

j=1 cj ≤ Cî. This implies

fT (Xi) ≥ î(n − i) + l̂(k − î − 1) =

= ĩ(n − i) + l̂(k − ĩ − 1) ≥ ĩ(n − i) + l̃(k − ĩ − 1)) = fC(Xi). (8)

Theorem 5.4. C � T for every T ∈ D
C,k.

Proof. Since aT (X) = fT (X) + k|X | for every T ∈ DC,k, the topologies T and
C satisfy the conditions of Lemma 2.7, due to Lemma 5.3. Hence S � T for
every T ∈ DC,k.
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6 Optimal topologies in CC,k

Now, that we know a optimal stable topology of DC,k, we examine the more
general class CC,k.

Lemma 6.1. If T ∈ CC,k is an optimal stable topology in CC,k, then aT (v) =
2k − 1 for every client v.

Proof. First observe, aC(v) = k +(k − 1) = 2k− 1 for every client v, and hence,
due to Lemma 5.1, AC(2k − 1) = 1 and AC(2k) > 1. Since C ∈ CC,k, every
optimal stable topology T in CC,k has to satisfy AT (2k − 1) ≤ 1. At the same
time, since 2l − 1 ≥ 0, we have AT (2k − 1) ≥ 1, leading to

AT (2k − 1) = 1.

Now assume, that there exists a client v with aT (v) > 2k−1. Then AT (2k) =
1 < AC(2k), contradicting the optimality of T . Hence we have aT (v) ≤ 2k − 1
for every client v.

Since aT (v) counts the stripes lost due to the failure of v, it is at least the
number of edges incident to v in all trees. Hence, summing up the aT (v), counts
every edge at least twice, except for those connected to the server. This results
in

∑

v∈V

aT (v) ≥ 2nk − degT (s) ≥ 2nk − n = n(2k − 1).

If aT (v) < 2k − 1 for at least one client, we have

∑

v∈V

aT (v) < n(2k − 1),

contradicting the preceding observation. Hence we have aT (v) = 2k − 1 for
every client v.

Corollary 6.2. If T is optimal stable in CC,k, then T ∈ DC,k.

Proof. Assume, that T has depth 3 or higher. Then in one tree ti there exists
a sequence s → u → v → w. Hence, by summing up the values aT (v), the edge
v → w would be countet at least three times, once for w, once for v and once
for u. This would lead to

∑

v∈V

aT (v) > 2nk − degT (s) ≥ 2nk − n = n(2k − 1),

and therefore aT (c) > 2k − 1 for at least one client, contradicting Lemma 6.1.
Hence, T has at most depth 2.

Now assume that one client receives more than one package. Then there
exists another client v, which does not receive any stripe directly from the server,
and hence has depth 2 in every tree. As a consequence v has no successor in T ,
leading to aT (v) = k, contradicting Lemma 6.1.

As a consequence every client receives at most one stripe directly from the
server. By Lemma 3.1, T has to satisfy degT (s) = Ck, because it is optimal
stable in C

C,k, implying T ∈ D
C,k.
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Lemma 6.3. For every topology T ∈ CC,k there exists a topology S ∈ CC,k with
S � T .

Proof. Let T be an arbitrary topology in CC,k \ DC,k, ie. there either exists
a client receiving none, two or more stripes directly from the server. Folowing
Lemma 3.1, we can assume that degT (s) = Ck and depth(T ) = 2. Since
there exists a client v receiving no stripe directly from s, there has to exist
another client v, receiving at least two stripes directly from s. As a consequence,
v is a leaf in every tree, while u is a tevel 1 in at least two trees. Assume
that Ti is one of those trees. Then we define Si by exchanging u and v, ie.
u becomes a leaf in Ti and v is moved to level 1. This leads to a topology
S = (T1, . . . , Ti−1, Si, Ti+1, . . . , Tk).

Now assume that there exists r with 0 ≤ r ≤ Ck and AS(r) < AT (r). Let
X ⊆ be given with |X | = AS(r) and aS(X) ≥ r. Since AS(r) < aT (r), this
implies

aT (X) < r ≤ aS(X). (9)

For j 6= i we have aS
j (X) = aT

j (X), since the trees Tj remain unchanged. For
Ti we have to differentiate four cases.

1. If u, v 6∈ X , then aS
i (X) = aT

i (X), implying aS(X) = aT (X), contradict-
ing (9).

2. If u, v ∈ X , then aS
i (X) = aT

i (X), leading to the same contradiction as
the preceding case.

3. If u ∈ X and v 6∈ X , then we have aS
i (X) ≤ aT

i (X), implying aS(X) ≤
aT (X), contradicting (9).

4. If u 6∈ X and v ∈ X , then set Y := (X ∪ {u}) \ {v}, ie. is X with v

replaced by u. Since v is a leaf in every tree, and u may occur at level 1,
the exchange of u and v increases aT

j , leading to

aS
j (Y ) = aT

j (Y ) ≥ aT
j (X) = aS

j (X)

for j 6= i. At the same time we have

aT
i (Y ) = aS

i (X),

and hence

aT (Y )

k
∑

j=1

aT
j (Y ) ≥

k
∑

j=1

aS
j (X) = aS(X) ≥ r.

Therefore AT (r) ≤ |Y | = |X | = AS(r), contradicting the assumption.

Consequently, we have AS(r) ≥ AT (r) for 0 ≤ r ≤ nk and hence S � T .
Since the number of clients, which receive no stripe from the server, is one less
in S than in T , without increasing the degree of s, iterated application of this
construction leads to a topology S ∈ DC,k with S � T .

Since C is optimal stable in DC,k, it is optimal stable in CC,k.

Theorem 6.4. C is optimal stable in CC,k.

Proof. For every topology T ∈ CC,k there exists a topology S ∈ DC,k with with
S � T , by LEmma 6.3. Since C is optimal in DC,k, we have C � T , due to the
fact, that � is transitive.
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A A simple fact about monotone sequences of

integers

Lemma A.1. Let (Xi)1≤i≤n be a finite sequence of integers, and x :=
∑n

i=1 xi.

(1) If (xi) is non-increasing, then

j
∑

i=1

xi ≥ j
⌊x

n

⌋

.

(2) If (xi) is non-decreasing, then

j
∑

i=1

xi ≤ j
⌈x

n

⌉

.

Proof. First we prove (1). Since (xi) is non-increasing, we have x1 ≥ xi for
1 ≤ i ≤ n, and hence x ≤ nx1, implying x1 ≥

⌈

x
n

⌉

≥
⌊

x
n

⌋

.
Now assume that there exists 2 ≤ j ≤ n with

j
∑

i=1

xi < j
⌊x

n

⌋

.

Choose j to be minimal among those satisfying the previos inequality. Then

j−1
∑

i=1

xi ≥ (j − 1)
⌊x

n

⌋

.

This implies

xj =

j
∑

i=1

xi −

j−1
∑

i=1

xi ≤ j
⌊x

n

⌋

− (j − 1)
⌊x

n

⌋

=
⌊x

n

⌋

,

and therefore, due to the monotony of (xi),

xi <
⌊x

n

⌋

for i ≥ j.

As a consequence, we have

n
∑

i=j+1

xi < (n − j)
⌊x

n

⌋

and hence,

n
∑

i=1

xi =

j
∑

i=1

xi +

n
∑

i=j+1

xi < i
⌊x

n

⌋

+ (n − i)
⌊x

n

⌋

≤ x,

contradicting the definition of x.
Statement (2) is a consequence of (1), since (yk)1≤i≤n with yi := xn − xi is

non-decreasing.
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